Go to the source code of this file.
|
| volScalarField | rAU ("rAU", 1.0/UEqn.A()) |
| |
| surfaceScalarField | rhorAUf ("rhorAUf", fvc::interpolate(rho *rAU)) |
| |
| volVectorField | HbyA (constrainHbyA(rAU *UEqn.H(), U, p_rgh)) |
| |
| surfaceScalarField | phig (-rhorAUf *ghf *fvc::snGrad(rho) *mesh.magSf()) |
| |
| surfaceScalarField | phiHbyA ("phiHbyA",(fvc::flux(rho *HbyA)+rhorAUf *fvc::ddtCorr(rho, U, phi))+phig) |
| |
| MRF | makeRelative (fvc::interpolate(rho), phiHbyA) |
| |
| | constrainPressure (p_rgh, rho, U, phiHbyA, rhorAUf, MRF) |
| |
| const volScalarField | psip0 (psi *p) |
| |
| | for (int nonOrth=0;nonOrth<=nNonOrthCorr;nonOrth++) |
| |
| thermo | correctRho (psi *p - psip0) |
| |
| | if (thermo.dpdt()) |
| |
| | if (closedVolume &&compressible) |
| |
◆ rAU()
| volScalarField rAU |
( |
"rAU" |
, |
|
|
1.0/UEqn. |
A() |
|
) |
| |
◆ rhorAUf()
| surfaceScalarField rhorAUf |
( |
"rhorAUf" |
, |
|
|
fvc::interpolate(rho *rAU) |
|
|
) |
| |
◆ HbyA()
| volVectorField HbyA |
( |
constrainHbyA(rAU *UEqn.H(), U, p_rgh) |
| ) |
|
◆ phig()
| surfaceScalarField phig |
( |
-rhorAUf *ghf * |
fvc::snGradrho) *mesh.magSf( | ) |
|
◆ phiHbyA()
| surfaceScalarField phiHbyA |
( |
"phiHbyA" |
, |
|
|
(fvc::flux(rho *HbyA)+rhorAUf *fvc::ddtCorr(rho, U, phi))+ |
phig |
|
) |
| |
◆ makeRelative()
◆ constrainPressure()
◆ psip0()
| const volScalarField psip0 |
( |
psi * |
p | ) |
|
◆ for()
Definition at line 39 of file pEqn.H.
References fvOptions, Foam::fvc::laplacian(), Foam::magSqr(), mesh, nCorr, nNonOrthCorr, nOuterCorr, p, p_rgh, p_rghDDtEqn(), phi, phig(), phiHbyA, psi, psip0(), rAU(), Foam::fvc::reconstruct(), rhorAUf(), solvPerfp_rgh, thermo, and U.
◆ correctRho()
◆ if() [1/2]
◆ if() [2/2]
◆ closedVolume
| bool closedVolume = p_rgh.needReference() |
Definition at line 1 of file pEqn.H.
◆ compressibility
| dimensionedScalar compressibility = fvc::domainIntegrate(psi) |
Definition at line 2 of file pEqn.H.
◆ compressible
| bool compressible = (compressibility.value() > SMALL) |
Definition at line 3 of file pEqn.H.
◆ rho
Definition at line 5 of file pEqn.H.