2 word alphaScheme(
"div(phi,alpha)");
10 mesh.ddtScheme(
"ddt(alpha)")
29 <<
"Sub-cycling is not supported " 30 "with the CrankNicolson ddt scheme" 35 refCast<const fv::CrankNicolsonDdtScheme<scalar>>(
ddtAlpha())
41 <<
"Only Euler and CrankNicolson ddt schemes are supported" 57 surfaceScalarField::Boundary& phicBf =
58 phic.boundaryFieldRef();
86 ? fv::localEulerDdtScheme<scalar>(
mesh).fvmDdt(
alpha1)
87 : fv::EulerDdtScheme<scalar>(
mesh).fvmDdt(
alpha1)
89 + fv::gaussConvectionScheme<scalar>
93 upwind<scalar>(
mesh, phiCN)
99 Info<<
"Phase-1 volume fraction = " 105 tmp<surfaceScalarField> talphaPhiUD(alpha1Eqn.flux());
110 Info<<
"Applying the previous iteration compression flux" <<
endl;
129 tmp<surfaceScalarField> talphaPhiUn
154 tmp<surfaceScalarField> talphaPhiCorr(talphaPhiUn() -
alphaPhi);
189 word(
mesh.ddtScheme(
"ddt(rho,U)"))
190 == fv::EulerDdtScheme<vector>::typeName
207 Info<<
"Phase-1 volume fraction = "
fvsPatchField< scalar > fvsPatchScalarField
fvMatrix< scalar > fvScalarMatrix
errorManipArg< error, int > exit(error &err, const int errNo=1)
dimensioned< Type > max(const dimensioned< Type > &, const dimensioned< Type > &)
#define FatalErrorInFunction
Report an error message using Foam::FatalError.
word alpharScheme("div(phirb,alpha)")
tmp< surfaceScalarField > talphaPhiCorr0
Ostream & endl(Ostream &os)
Add newline and flush stream.
tmp< surfaceScalarField > interpolate(const RhoType &rho)
forAll(phic.boundaryField(), patchi)
tmp< DimensionedField< TypeR, GeoMesh > > New(const tmp< DimensionedField< TypeR, GeoMesh >> &tdf1, const word &name, const dimensionSet &dimensions)
GeometricField< scalar, fvPatchField, volMesh > volScalarField
void explicitSolve(const RdeltaTType &rDeltaT, const RhoType &rho, volScalarField &psi, const surfaceScalarField &phiPsi, const SpType &Sp, const SuType &Su)
volScalarField alpha10("alpha10", alpha1)
bool isType(const Type &t)
Check the typeid.
surfaceScalarField phir("phir", phic *interface.nHatf())
tmp< surfaceScalarField > phiCN(phi)
Info<< "Predicted p max-min : "<< max(p).value()<< " "<< min(p).value()<< endl;rho==max(psi *p+alphal *rhol0+((alphav *psiv+alphal *psil)-psi)*pSat, rhoMin);#1"/home/ubuntu/OpenFOAM-4.1/applications/solvers/multiphase/cavitatingFoam/alphavPsi.H"1{alphav=max(min((rho-rholSat)/(rhovSat-rholSat), scalar(1)), scalar(0));alphal=1.0-alphav;Info<< "max-min alphav: "<< max(alphav).value()<< " "<< min(alphav).value()<< endl;psiModel-> correct()
Info<< "Reading field p_rgh\n"<< endl;volScalarField p_rgh(IOobject("p_rgh", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);Info<< "Reading field U\n"<< endl;volVectorField U(IOobject("U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);Info<< "Creating phaseChangeTwoPhaseMixture\n"<< endl;autoPtr< phaseChangeTwoPhaseMixture > mixture
dimensioned< Type > min(const dimensioned< Type > &, const dimensioned< Type > &)
dimensioned< scalar > mag(const dimensioned< Type > &)
surfaceScalarField phic(mixture.cAlpha()*mag(phi/mesh.magSf()))
tmp< surfaceScalarField > flux(const volVectorField &vvf)
Return the face-flux field obtained from the given volVectorField.
GeometricField< scalar, fvsPatchField, surfaceMesh > surfaceScalarField
surfaceScalarField alphaPhi(phi.name()+alpha1.name(), fvc::flux(phi, alpha1, alphaScheme))
tmp< fv::ddtScheme< scalar > > ddtAlpha(fv::ddtScheme< scalar >::New(mesh, mesh.ddtScheme("ddt(alpha)")))