Functions | Variables
alphaEqn.H File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

word alpharScheme ("div(phirb,alpha)")
 
tmp< fv::ddtScheme< scalar > > ddtAlpha (fv::ddtScheme< scalar >::New(mesh, mesh.ddtScheme("ddt(alpha)")))
 
 if (isType< fv::EulerDdtScheme< scalar >>(ddtAlpha())||isType< fv::localEulerDdtScheme< scalar >>(ddtAlpha()))
 
else if (isType< fv::CrankNicolsonDdtScheme< scalar >>(ddtAlpha()))
 
surfaceScalarField phic (mixture.cAlpha()*mag(phi/mesh.magSf()))
 
 if (icAlpha > 0)
 
 forAll (phic.boundaryField(), patchi)
 
tmp< surfaceScalarField > phiCN (phi)
 
 if (ocCoeff > 0)
 
 if (MULESCorr)
 
 for (int aCorr=0;aCorr< nAlphaCorr;aCorr++)
 
 if (alphaApplyPrevCorr &&MULESCorr)
 
 if (word(mesh.ddtScheme("ddt(rho,U)"))==fv::EulerDdtScheme< vector >::typeName)
 

Variables

scalar ocCoeff = 0
 
 else
 
scalar cnCoeff = 1.0/(1.0 + ocCoeff)
 
surfaceScalarField::Boundary & phicBf
 

Function Documentation

word alpharScheme ( "div(phirb,alpha)"  )
tmp<fv::ddtScheme<scalar> > ddtAlpha ( fv::ddtScheme< scalar >  ::Newmesh, mesh.ddtScheme("ddt(alpha)"))

Referenced by if().

Here is the caller graph for this function:

if ( isType< fv::EulerDdtScheme< scalar >>  ddtAlpha())||isType< fv::localEulerDdtScheme< scalar >>(ddtAlpha())

Definition at line 17 of file alphaEqn.H.

else if ( isType< fv::CrankNicolsonDdtScheme< scalar >>  ddtAlpha())

Definition at line 24 of file alphaEqn.H.

References ddtAlpha(), Foam::exit(), Foam::FatalError, FatalErrorInFunction, nAlphaSubCycles(), and ocCoeff.

Here is the call graph for this function:

surfaceScalarField phic ( mixture.  cAlpha)*mag(phi/mesh.magSf())

Referenced by for(), and if().

Here is the caller graph for this function:

if ( icAlpha  ,
 
)

Definition at line 51 of file alphaEqn.H.

References icAlpha(), Foam::MULES::interpolate(), Foam::mag(), mixture, phic(), and U.

Here is the call graph for this function:

forAll ( phic.  boundaryField(),
patchi   
)

Definition at line 62 of file alphaEqn.H.

References patchi, phi, and phiCN().

Here is the call graph for this function:

tmp<surfaceScalarField> phiCN ( phi  )

Referenced by forAll().

Here is the caller graph for this function:

if ( ocCoeff  ,
 
)

Definition at line 75 of file alphaEqn.H.

References cnCoeff, and phi.

if ( MULESCorr  )

Definition at line 80 of file alphaEqn.H.

References alpha1, alpha2, alphaApplyPrevCorr(), alphaPhi(), correct, Foam::endl(), Foam::Info, LTS, Foam::max(), mesh, Foam::min(), mixture, and talphaPhiCorr0.

Here is the call graph for this function:

for ( )

Definition at line 125 of file alphaEqn.H.

References alpha1, alpha10(), alpha2, alphaPhi(), alpharScheme(), cnCoeff, correct, Foam::MULES::explicitSolve(), Foam::fvc::flux(), mixture, MULESCorr(), phi, phic(), and phir().

Here is the call graph for this function:

if ( alphaApplyPrevCorr &&  MULESCorr)

Definition at line 182 of file alphaEqn.H.

References alphaPhi(), and talphaPhiCorr0.

Here is the call graph for this function:

if ( word(mesh.ddtScheme("ddt(rho,U)"))  = = fv::EulerDdtScheme<vector>::typeName)

Definition at line 188 of file alphaEqn.H.

References alpha1, alphaPhi(), cnCoeff, Foam::endl(), Foam::Info, Foam::max(), mesh, Foam::min(), phi, rho1, rho2, and rhoPhi.

Here is the call graph for this function:

Variable Documentation

scalar ocCoeff = 0

Definition at line 15 of file alphaEqn.H.

Referenced by if().

else
Initial value:
{
<< "Only Euler and CrankNicolson ddt schemes are supported"
errorManipArg< error, int > exit(error &err, const int errNo=1)
Definition: errorManip.H:124
error FatalError
#define FatalErrorInFunction
Report an error message using Foam::FatalError.
Definition: error.H:319

Definition at line 39 of file alphaEqn.H.

scalar cnCoeff = 1.0/(1.0 + ocCoeff)

Definition at line 45 of file alphaEqn.H.

Referenced by for(), and if().

surfaceScalarField::Boundary& phicBf
Initial value:
=
phic.boundaryFieldRef()
surfaceScalarField phic(mixture.cAlpha()*mag(phi/mesh.magSf()))

Definition at line 57 of file alphaEqn.H.