Incompressible, polynomial form of equation of state, using a polynomial function for density. More...
Public Member Functions | |
icoPolynomial (const Specie &sp, const Polynomial< PolySize > &rhoPoly) | |
Construct from components. More... | |
icoPolynomial (const dictionary &dict) | |
Construct from dictionary. More... | |
icoPolynomial (const word &name, const icoPolynomial &) | |
Construct as named copy. More... | |
autoPtr< icoPolynomial > | clone () const |
Construct and return a clone. More... | |
scalar | rho (scalar p, scalar T) const |
Return density [kg/m^3]. More... | |
scalar | H (const scalar p, const scalar T) const |
Return enthalpy contribution [J/kg]. More... | |
scalar | Cp (scalar p, scalar T) const |
Return Cp contribution [J/(kg K]. More... | |
scalar | E (const scalar p, const scalar T) const |
Return internal energy contribution [J/kg]. More... | |
scalar | Cv (scalar p, scalar T) const |
Return Cv contribution [J/(kg K]. More... | |
scalar | Sp (const scalar p, const scalar T) const |
Return entropy contribution to the integral of Cp/T [J/kg/K]. More... | |
scalar | Sv (const scalar p, const scalar T) const |
Return entropy contribution to the integral of Cv/T [J/kg/K]. More... | |
scalar | psi (scalar p, scalar T) const |
Return compressibility [s^2/m^2]. More... | |
scalar | Z (scalar p, scalar T) const |
Return compression factor []. More... | |
scalar | CpMCv (scalar p, scalar T) const |
Return (Cp - Cv) [J/(kg K]. More... | |
void | write (Ostream &os) const |
Write to Ostream. More... | |
void | operator+= (const icoPolynomial &) |
void | operator*= (const scalar) |
Static Public Member Functions | |
static autoPtr< icoPolynomial > | New (const dictionary &dict) |
static word | typeName () |
Return the instantiated type name. More... | |
Static Public Attributes | |
static const bool | incompressible = true |
Is the equation of state is incompressible i.e. rho != f(p) More... | |
static const bool | isochoric = false |
Is the equation of state is isochoric i.e. rho = const. More... | |
Friends | |
icoPolynomial | operator+ (const icoPolynomial &, const icoPolynomial &) |
icoPolynomial | operator* (const scalar s, const icoPolynomial &) |
icoPolynomial | operator== (const icoPolynomial &, const icoPolynomial &) |
Ostream & | operator (Ostream &, const icoPolynomial &) |
Incompressible, polynomial form of equation of state, using a polynomial function for density.
Coefficient mixing is very inaccurate and not supported, so this equation of state is not applicable to mixtures.
Property | Description |
---|---|
rhoCoeffs<8> | Density polynomial coefficients |
Example of the specification of the equation of state:
equationOfState { rhoCoeffs<8> ( 1000 -0.05 0.003 0 0 0 0 0 ); }
The polynomial expression is evaluated as so:
Definition at line 82 of file icoPolynomial.H.
|
inline |
Construct from components.
Definition at line 32 of file icoPolynomialI.H.
References Foam::name().
icoPolynomial | ( | const dictionary & | dict | ) |
Construct from dictionary.
Definition at line 37 of file icoPolynomial.C.
|
inline |
Construct as named copy.
|
inline |
Construct and return a clone.
Definition at line 58 of file icoPolynomialI.H.
|
inlinestatic |
Definition at line 69 of file icoPolynomialI.H.
References dict, and icoPolynomial< Specie, PolySize >::rho().
|
inlinestatic |
Return the instantiated type name.
Definition at line 155 of file icoPolynomial.H.
|
inline |
Return density [kg/m^3].
Definition at line 82 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::H().
Referenced by icoPolynomial< Specie, PolySize >::New().
|
inline |
Return enthalpy contribution [J/kg].
Definition at line 93 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::Cp(), and rho.
Referenced by icoPolynomial< Specie, PolySize >::rho().
|
inline |
Return Cp contribution [J/(kg K].
Definition at line 104 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::E().
Referenced by icoPolynomial< Specie, PolySize >::H().
|
inline |
Return internal energy contribution [J/kg].
Definition at line 115 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::Cv().
Referenced by icoPolynomial< Specie, PolySize >::Cp().
|
inline |
Return Cv contribution [J/(kg K].
Definition at line 126 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::Sp().
Referenced by icoPolynomial< Specie, PolySize >::E().
|
inline |
Return entropy contribution to the integral of Cp/T [J/kg/K].
Definition at line 137 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::Sv().
Referenced by icoPolynomial< Specie, PolySize >::Cv().
|
inline |
Return entropy contribution to the integral of Cv/T [J/kg/K].
Definition at line 148 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::psi().
Referenced by icoPolynomial< Specie, PolySize >::Sp().
|
inline |
Return compressibility [s^2/m^2].
Definition at line 159 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::Z().
Referenced by icoPolynomial< Specie, PolySize >::Sv().
|
inline |
Return compression factor [].
Definition at line 170 of file icoPolynomialI.H.
References icoPolynomial< Specie, PolySize >::CpMCv().
Referenced by icoPolynomial< Specie, PolySize >::psi().
|
inline |
Return (Cp - Cv) [J/(kg K].
Definition at line 181 of file icoPolynomialI.H.
Referenced by icoPolynomial< Specie, PolySize >::Z().
void write | ( | Ostream & | os | ) | const |
Write to Ostream.
Definition at line 53 of file icoPolynomial.C.
References dictionary::add(), dict, dictionaryName::dictName(), Foam::indent(), Foam::name(), and Foam::vtkWriteOps::write().
|
inline |
Definition at line 194 of file icoPolynomialI.H.
References NotImplemented.
|
inline |
Definition at line 203 of file icoPolynomialI.H.
References NotImplemented, and s().
|
friend |
|
friend |
|
friend |
|
friend |
|
static |
Is the equation of state is incompressible i.e. rho != f(p)
Definition at line 164 of file icoPolynomial.H.
|
static |
Is the equation of state is isochoric i.e. rho = const.
Definition at line 167 of file icoPolynomial.H.