distributionModel Class Referenceabstract

A library of runtime-selectable distribution models. More...

Inheritance diagram for distributionModel:
Collaboration diagram for distributionModel:

Public Member Functions

 TypeName ("distributionModel")
 Runtime type information. More...
 
 declareRunTimeSelectionTable (autoPtr, distributionModel, dictionary,(const dictionary &dict, Random &rndGen),(dict, rndGen))
 Declare runtime constructor selection table. More...
 
 distributionModel (const word &name, const dictionary &dict, Random &rndGen)
 Construct from dictionary. More...
 
 distributionModel (const distributionModel &p)
 Construct copy. More...
 
virtual autoPtr< distributionModelclone () const =0
 Construct and return a clone. More...
 
virtual ~distributionModel ()
 Destructor. More...
 
virtual scalar sample () const =0
 Sample the distributionModel. More...
 
virtual scalar minValue () const =0
 Return the minimum value. More...
 
virtual scalar maxValue () const =0
 Return the maximum value. More...
 
virtual scalar meanValue () const =0
 Return the maximum value. More...
 

Static Public Member Functions

static autoPtr< distributionModelNew (const dictionary &dict, Random &rndGen)
 Selector. More...
 

Protected Member Functions

virtual void check () const
 Check that the distribution model is valid. More...
 

Protected Attributes

const dictionary distributionModelDict_
 Coefficients dictionary. More...
 
RandomrndGen_
 Reference to the random number generator. More...
 

Detailed Description

A library of runtime-selectable distribution models.

Returns a sampled value given the expectation (nu) and variance (sigma^2)

Current distribution models include:

  • exponential
  • fixedValue
  • general
  • multi-normal
  • normal
  • Rosin-Rammler
  • Mass-based Rosin-Rammler
  • uniform

The distributionModel is tabulated in equidistant nPoints, in an interval. These values are integrated to obtain the cumulated distribution model, which is then used to change the distribution from unifrom to the actual distributionModel.

Source files

Definition at line 68 of file distributionModel.H.

Constructor & Destructor Documentation

◆ distributionModel() [1/2]

distributionModel ( const word name,
const dictionary dict,
Random rndGen 
)

Construct from dictionary.

Definition at line 63 of file distributionModel.C.

Referenced by distributionModel::check().

Here is the caller graph for this function:

◆ distributionModel() [2/2]

Construct copy.

Definition at line 75 of file distributionModel.C.

◆ ~distributionModel()

~distributionModel ( )
virtual

Destructor.

Definition at line 86 of file distributionModel.C.

Member Function Documentation

◆ check()

void check ( ) const
protectedvirtual

Check that the distribution model is valid.

Definition at line 39 of file distributionModel.C.

References Foam::abort(), distributionModel::distributionModel(), Foam::FatalError, FatalErrorInFunction, maxValue, minValue, Foam::nl, and Foam::type().

Here is the call graph for this function:

◆ TypeName()

TypeName ( "distributionModel"  )

Runtime type information.

◆ declareRunTimeSelectionTable()

declareRunTimeSelectionTable ( autoPtr  ,
distributionModel  ,
dictionary  ,
(const dictionary &dict, Random &rndGen ,
(dict, rndGen  
)

Declare runtime constructor selection table.

◆ clone()

virtual autoPtr<distributionModel> clone ( ) const
pure virtual

Construct and return a clone.

Implemented in massRosinRammler, multiNormal, normal, RosinRammler, general, exponential, uniform, and fixedValue.

◆ New()

Foam::autoPtr< Foam::distributionModel > New ( const dictionary dict,
Random rndGen 
)
static

Selector.

Definition at line 31 of file distributionModelNew.C.

References dict, Foam::endl(), Foam::exit(), Foam::FatalError, FatalErrorInFunction, Foam::Info, dictionary::lookup(), Foam::nl, and rndGen().

Here is the call graph for this function:

◆ sample()

virtual scalar sample ( ) const
pure virtual

◆ minValue()

virtual scalar minValue ( ) const
pure virtual

Return the minimum value.

Implemented in massRosinRammler, multiNormal, normal, RosinRammler, general, exponential, uniform, and fixedValue.

◆ maxValue()

virtual scalar maxValue ( ) const
pure virtual

Return the maximum value.

Implemented in massRosinRammler, multiNormal, normal, RosinRammler, general, exponential, uniform, and fixedValue.

◆ meanValue()

virtual scalar meanValue ( ) const
pure virtual

Return the maximum value.

Implemented in massRosinRammler, multiNormal, normal, RosinRammler, general, exponential, uniform, and fixedValue.

Member Data Documentation

◆ distributionModelDict_

const dictionary distributionModelDict_
protected

Coefficients dictionary.

Definition at line 76 of file distributionModel.H.

◆ rndGen_

Random& rndGen_
protected

Reference to the random number generator.

Definition at line 79 of file distributionModel.H.

Referenced by uniform::sample(), exponential::sample(), general::sample(), RosinRammler::sample(), multiNormal::sample(), and normal::sample().


The documentation for this class was generated from the following files: