Public Types | Public Member Functions | Static Public Member Functions | Friends | List of all members
thermo< Thermo, Type > Class Template Reference

Basic thermodynamics type based on the use of fitting functions for cp, h, s obtained from the template argument type thermo. All other properties are derived from these primitive functions. More...

Inheritance diagram for thermo< Thermo, Type >:
Inheritance graph
[legend]
Collaboration diagram for thermo< Thermo, Type >:
Collaboration graph
[legend]

Public Types

typedef thermo< Thermo, Type > thermoType
 The thermodynamics of the individual species'. More...
 

Public Member Functions

 thermo (const Thermo &sp)
 Construct from components. More...
 
 thermo (const dictionary &dict)
 Construct from dictionary. More...
 
 thermo (const word &name, const thermo &)
 Construct as named copy. More...
 
scalar Cv (const scalar p, const scalar T) const
 Heat capacity at constant volume [J/(kg K)]. More...
 
scalar Cpv (const scalar p, const scalar T) const
 Heat capacity at constant pressure/volume [J/(kg K)]. More...
 
scalar gamma (const scalar p, const scalar T) const
 Gamma = Cp/Cv []. More...
 
scalar CpByCpv (const scalar p, const scalar T) const
 Ratio of heat capacity at constant pressure to that at. More...
 
scalar HE (const scalar p, const scalar T) const
 Enthalpy/Internal energy [J/kg]. More...
 
scalar Es (const scalar p, const scalar T) const
 Sensible internal energy [J/kg]. More...
 
scalar Ea (const scalar p, const scalar T) const
 Absolute internal energy [J/kg]. More...
 
scalar G (const scalar p, const scalar T) const
 Gibbs free energy [J/kg]. More...
 
scalar A (const scalar p, const scalar T) const
 Helmholtz free energy [J/kg]. More...
 
scalar cp (const scalar p, const scalar T) const
 Heat capacity at constant pressure [J/(kmol K)]. More...
 
scalar ha (const scalar p, const scalar T) const
 Absolute Enthalpy [J/kmol]. More...
 
scalar hs (const scalar p, const scalar T) const
 Sensible enthalpy [J/kmol]. More...
 
scalar hc () const
 Chemical enthalpy [J/kmol]. More...
 
scalar s (const scalar p, const scalar T) const
 Entropy [J/(kmol K)]. More...
 
scalar he (const scalar p, const scalar T) const
 Enthalpy/Internal energy [J/kmol]. More...
 
scalar cv (const scalar p, const scalar T) const
 Heat capacity at constant volume [J/(kmol K)]. More...
 
scalar es (const scalar p, const scalar T) const
 Sensible internal energy [J/kmol]. More...
 
scalar ea (const scalar p, const scalar T) const
 Absolute internal energy [J/kmol]. More...
 
scalar g (const scalar p, const scalar T) const
 Gibbs free energy [J/kmol]. More...
 
scalar a (const scalar p, const scalar T) const
 Helmholtz free energy [J/kmol]. More...
 
scalar K (const scalar p, const scalar T) const
 Equilibrium constant [] i.t.o fugacities. More...
 
scalar Kp (const scalar p, const scalar T) const
 Equilibrium constant [] i.t.o. partial pressures. More...
 
scalar Kc (const scalar p, const scalar T) const
 Equilibrium constant i.t.o. molar concentration. More...
 
scalar Kx (const scalar p, const scalar T) const
 Equilibrium constant [] i.t.o. mole-fractions. More...
 
scalar Kn (const scalar p, const scalar T, const scalar n) const
 Equilibrium constant [] i.t.o. number of moles. More...
 
scalar THE (const scalar H, const scalar p, const scalar T0) const
 Temperature from enthalpy or internal energy. More...
 
scalar THs (const scalar Hs, const scalar p, const scalar T0) const
 Temperature from sensible enthalpy given an initial T0. More...
 
scalar THa (const scalar H, const scalar p, const scalar T0) const
 Temperature from absolute enthalpy. More...
 
scalar TEs (const scalar E, const scalar p, const scalar T0) const
 Temperature from sensible internal energy. More...
 
scalar TEa (const scalar E, const scalar p, const scalar T0) const
 Temperature from absolute internal energy. More...
 
scalar dKcdTbyKc (const scalar p, const scalar T) const
 Derivative of B (acooding to Niemeyer et al.) w.r.t. temperature. More...
 
scalar dcpdT (const scalar p, const scalar T) const
 Derivative of cp w.r.t. temperature. More...
 
void write (Ostream &os) const
 Write to Ostream. More...
 
void operator+= (const thermo &)
 
void operator*= (const scalar)
 

Static Public Member Functions

static word typeName ()
 Return the instantiated type name. More...
 
static word heName ()
 Name of Enthalpy/Internal energy. More...
 

Friends

thermo operator+ (const thermo &, const thermo &)
 
thermo operator* (const scalar s, const thermo &)
 
thermo operator== (const thermo &, const thermo &)
 
Ostreamoperator (Ostream &, const thermo &)
 

Detailed Description

template<class Thermo, template< class > class Type>
class Foam::species::thermo< Thermo, Type >

Basic thermodynamics type based on the use of fitting functions for cp, h, s obtained from the template argument type thermo. All other properties are derived from these primitive functions.

Source files

Definition at line 52 of file thermo.H.

Member Typedef Documentation

◆ thermoType

typedef thermo<Thermo, Type> thermoType

The thermodynamics of the individual species'.

Definition at line 121 of file thermo.H.

Constructor & Destructor Documentation

◆ thermo() [1/3]

thermo ( const Thermo &  sp)
inline

Construct from components.

Definition at line 32 of file thermoI.H.

References Foam::abort(), f(), F(), Foam::FatalError, FatalErrorInFunction, limit(), Foam::mag(), and p.

Here is the call graph for this function:

◆ thermo() [2/3]

thermo ( const dictionary dict)

Construct from dictionary.

Definition at line 40 of file thermo.C.

◆ thermo() [3/3]

thermo ( const word name,
const thermo< Thermo, Type > &  st 
)
inline

Construct as named copy.

Definition at line 88 of file thermoI.H.

Member Function Documentation

◆ typeName()

static word typeName ( )
inlinestatic

Return the instantiated type name.

Definition at line 139 of file thermo.H.

References Foam::cp(), g, Foam::constant::universal::G, he, n, s(), Foam::T(), and Foam::blockMeshTools::write().

Here is the call graph for this function:

◆ heName()

Foam::word heName ( )
inlinestatic

Name of Enthalpy/Internal energy.

Definition at line 101 of file thermoI.H.

◆ Cv()

Foam::scalar Cv ( const scalar  p,
const scalar  T 
) const
inline

Heat capacity at constant volume [J/(kg K)].

Definition at line 109 of file thermoI.H.

◆ Cpv()

Foam::scalar Cpv ( const scalar  p,
const scalar  T 
) const
inline

Heat capacity at constant pressure/volume [J/(kg K)].

Definition at line 117 of file thermoI.H.

◆ gamma()

Foam::scalar gamma ( const scalar  p,
const scalar  T 
) const
inline

Gamma = Cp/Cv [].

Definition at line 125 of file thermoI.H.

References thermo< Thermo, Type >::CpByCpv().

Here is the call graph for this function:

◆ CpByCpv()

Foam::scalar CpByCpv ( const scalar  p,
const scalar  T 
) const
inline

Ratio of heat capacity at constant pressure to that at.

constant pressure/volume []

Definition at line 135 of file thermoI.H.

Referenced by thermo< Thermo, Type >::gamma().

Here is the caller graph for this function:

◆ HE()

Foam::scalar HE ( const scalar  p,
const scalar  T 
) const
inline

Enthalpy/Internal energy [J/kg].

Definition at line 146 of file thermoI.H.

◆ Es()

Foam::scalar Es ( const scalar  p,
const scalar  T 
) const
inline

Sensible internal energy [J/kg].

Definition at line 154 of file thermoI.H.

References rho.

◆ Ea()

Foam::scalar Ea ( const scalar  p,
const scalar  T 
) const
inline

Absolute internal energy [J/kg].

Definition at line 162 of file thermoI.H.

References rho.

◆ G()

Foam::scalar G ( const scalar  p,
const scalar  T 
) const
inline

Gibbs free energy [J/kg].

Definition at line 170 of file thermoI.H.

◆ A()

Foam::scalar A ( const scalar  p,
const scalar  T 
) const
inline

Helmholtz free energy [J/kg].

Definition at line 178 of file thermoI.H.

◆ cp()

Foam::scalar cp ( const scalar  p,
const scalar  T 
) const
inline

Heat capacity at constant pressure [J/(kmol K)].

Definition at line 186 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ ha()

Foam::scalar ha ( const scalar  p,
const scalar  T 
) const
inline

Absolute Enthalpy [J/kmol].

Definition at line 194 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ hs()

Foam::scalar hs ( const scalar  p,
const scalar  T 
) const
inline

Sensible enthalpy [J/kmol].

Definition at line 202 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ hc()

Foam::scalar hc ( ) const
inline

Chemical enthalpy [J/kmol].

Definition at line 210 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ s()

Foam::scalar s ( const scalar  p,
const scalar  T 
) const
inline

Entropy [J/(kmol K)].

Definition at line 218 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ he()

Foam::scalar he ( const scalar  p,
const scalar  T 
) const
inline

Enthalpy/Internal energy [J/kmol].

Definition at line 226 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ cv()

Foam::scalar cv ( const scalar  p,
const scalar  T 
) const
inline

Heat capacity at constant volume [J/(kmol K)].

Definition at line 234 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ es()

Foam::scalar es ( const scalar  p,
const scalar  T 
) const
inline

Sensible internal energy [J/kmol].

Definition at line 242 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ ea()

Foam::scalar ea ( const scalar  p,
const scalar  T 
) const
inline

Absolute internal energy [J/kmol].

Definition at line 250 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ g()

Foam::scalar g ( const scalar  p,
const scalar  T 
) const
inline

Gibbs free energy [J/kmol].

Definition at line 258 of file thermoI.H.

References Foam::constant::universal::G, and W().

Here is the call graph for this function:

◆ a()

Foam::scalar a ( const scalar  p,
const scalar  T 
) const
inline

Helmholtz free energy [J/kmol].

Definition at line 266 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ K()

Foam::scalar K ( const scalar  p,
const scalar  T 
) const
inline

Equilibrium constant [] i.t.o fugacities.

= PIi(fi/Pstd)^nui

Definition at line 274 of file thermoI.H.

References Foam::exp(), Foam::constant::universal::G, Foam::constant::standard::Pstd, Foam::constant::thermodynamic::RR, T, and Y.

Here is the call graph for this function:

◆ Kp()

Foam::scalar Kp ( const scalar  p,
const scalar  T 
) const
inline

Equilibrium constant [] i.t.o. partial pressures.

= PIi(pi/Pstd)^nui For low pressures (where the gas mixture is near perfect) Kp = K

Definition at line 291 of file thermoI.H.

◆ Kc()

Foam::scalar Kc ( const scalar  p,
const scalar  T 
) const
inline

Equilibrium constant i.t.o. molar concentration.

= PIi(ci/cstd)^nui For low pressures (where the gas mixture is near perfect) Kc = Kp(pstd/(RR*T))^nu

Definition at line 299 of file thermoI.H.

References Foam::equal(), thermo< Thermo, Type >::Kx(), Foam::pow(), Foam::constant::standard::Pstd, Foam::constant::thermodynamic::RR, W(), and Y.

Here is the call graph for this function:

◆ Kx()

Foam::scalar Kx ( const scalar  p,
const scalar  T 
) const
inline

Equilibrium constant [] i.t.o. mole-fractions.

For low pressures (where the gas mixture is near perfect) Kx = Kp(pstd/p)^nui

Definition at line 316 of file thermoI.H.

References Foam::equal(), thermo< Thermo, Type >::Kn(), Foam::pow(), Foam::constant::standard::Pstd, W(), and Y.

Referenced by thermo< Thermo, Type >::Kc().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ Kn()

Foam::scalar Kn ( const scalar  p,
const scalar  T,
const scalar  n 
) const
inline

Equilibrium constant [] i.t.o. number of moles.

For low pressures (where the gas mixture is near perfect) Kn = Kp(n*pstd/p)^nui where n = number of moles in mixture

Definition at line 336 of file thermoI.H.

References Foam::equal(), Foam::pow(), Foam::constant::standard::Pstd, thermo< Thermo, Type >::THE(), W(), and Y.

Referenced by thermo< Thermo, Type >::Kx().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ THE()

Foam::scalar THE ( const scalar  H,
const scalar  p,
const scalar  T0 
) const
inline

Temperature from enthalpy or internal energy.

given an initial temperature T0

Definition at line 357 of file thermoI.H.

References thermo< Thermo, Type >::THs().

Referenced by thermo< Thermo, Type >::Kn().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ THs()

Foam::scalar THs ( const scalar  Hs,
const scalar  p,
const scalar  T0 
) const
inline

Temperature from sensible enthalpy given an initial T0.

Definition at line 369 of file thermoI.H.

References T, and thermo< Thermo, Type >::THa().

Referenced by thermo< Thermo, Type >::THE().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ THa()

Foam::scalar THa ( const scalar  H,
const scalar  p,
const scalar  T0 
) const
inline

Temperature from absolute enthalpy.

given an initial temperature T0

Definition at line 389 of file thermoI.H.

References T, and thermo< Thermo, Type >::TEs().

Referenced by thermo< Thermo, Type >::THs().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ TEs()

Foam::scalar TEs ( const scalar  E,
const scalar  p,
const scalar  T0 
) const
inline

Temperature from sensible internal energy.

given an initial temperature T0

Definition at line 409 of file thermoI.H.

References T, and thermo< Thermo, Type >::TEa().

Referenced by thermo< Thermo, Type >::THa().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ TEa()

Foam::scalar TEa ( const scalar  E,
const scalar  p,
const scalar  T0 
) const
inline

Temperature from absolute internal energy.

given an initial temperature T0

Definition at line 429 of file thermoI.H.

References thermo< Thermo, Type >::dKcdTbyKc(), and T.

Referenced by thermo< Thermo, Type >::TEs().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ dKcdTbyKc()

Foam::scalar dKcdTbyKc ( const scalar  p,
const scalar  T 
) const
inline

Derivative of B (acooding to Niemeyer et al.) w.r.t. temperature.

Definition at line 450 of file thermoI.H.

References Foam::equal(), Foam::constant::standard::Pstd, Foam::constant::thermodynamic::RR, W(), and Y.

Referenced by thermo< Thermo, Type >::TEa().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ dcpdT()

Foam::scalar dcpdT ( const scalar  p,
const scalar  T 
) const
inline

Derivative of cp w.r.t. temperature.

Definition at line 470 of file thermoI.H.

References W().

Here is the call graph for this function:

◆ write()

void write ( Ostream os) const

Write to Ostream.

Definition at line 49 of file thermo.C.

References Foam::blockMeshTools::write(), and Ostream::write().

Here is the call graph for this function:

◆ operator+=()

void operator+= ( const thermo< Thermo, Type > &  )
inline

Definition at line 480 of file thermoI.H.

◆ operator*=()

void operator*= ( const scalar  s)
inline

Definition at line 489 of file thermoI.H.

References s().

Here is the call graph for this function:

Friends And Related Function Documentation

◆ operator+

thermo operator+ ( const thermo< Thermo, Type > &  ,
const thermo< Thermo, Type > &   
)
friend

◆ operator*

thermo operator* ( const scalar  s,
const thermo< Thermo, Type > &   
)
friend

◆ operator==

thermo operator== ( const thermo< Thermo, Type > &  ,
const thermo< Thermo, Type > &   
)
friend

◆ operator

Ostream& operator ( Ostream ,
const thermo< Thermo, Type > &   
)
friend

The documentation for this class was generated from the following files: