62 y[i] = y0[i] + dx*dydx0[i];
72 y[i] = y0[i] + 0.5*dx*(dydx0[i] + err_[i]);
73 err_[i] = 0.5*dx*(err_[i] - dydx0[i]);
virtual scalar solve(const scalar x0, const scalarField &y0, const scalarField &dydx0, const scalar dx, scalarField &y) const =0
Solve a single step dx and return the error.
#define forAll(list, i)
Loop across all elements in list.
Abstract base class for the systems of ordinary differential equations.
A list of keyword definitions, which are a keyword followed by any number of values (e...
An ODE solver for chemistry.
Macros for easy insertion into run-time selection tables.
scalar solve(const scalar x0, const scalarField &y0, const scalarField &dydx0, const scalar dx, scalarField &y) const
Solve a single step dx and return the error.
const ODESystem & odes_
Reference to ODESystem.
addToRunTimeSelectionTable(ensightPart, ensightPartCells, istream)
defineTypeNameAndDebug(combustionModel, 0)
scalar normalizeError(const scalarField &y0, const scalarField &y, const scalarField &err) const
Return the nomalized scalar error.
Abstract base-class for ODE system solvers.
Trapezoid(const ODESystem &ode, const dictionary &dict)
Construct from ODE.
virtual void derivatives(const scalar x, const scalarField &y, scalarField &dydx) const =0
Calculate the derivatives in dydx.