Compact representation of the Plücker spatial transformation tensor in terms of the rotation tensor E and translation vector r .
More...
Classes | |
| class | dual |
| Wrapper-class to provide dual functions and operators. More... | |
| class | transpose |
| Wrapper-class to provide transpose functions and operators. More... | |
Public Member Functions | |
| spatialTransform () | |
| Construct null. More... | |
| spatialTransform (const tensor &E, const vector &r) | |
| Construct from components. More... | |
| spatialTransform (Istream &) | |
| Construct from Istream. More... | |
| const tensor & | E () const |
| Return the rotation tensor. More... | |
| tensor & | E () |
| Return non-const access to the rotation tensor. More... | |
| const vector & | r () const |
| Return the translation vector. More... | |
| vector & | r () |
| Return non-const access to the translation vector. More... | |
| transpose | T () const |
| Return the transpose transformation tensor ^A{X^*}_B. More... | |
| spatialTransform | inv () const |
| Return the inverse transformation tensor: X^-1. More... | |
| dual | operator* () const |
| Return the dual transformation tensor ^B{X^*}_A. More... | |
| operator spatialTensor () const | |
| Return transformation tensor ^BX_A. More... | |
| void | operator&= (const spatialTransform &X) |
| Inner-product multiply with a transformation tensor. More... | |
| spatialTransform | operator& (const spatialTransform &X) const |
| Return the inner-product of two transformation tensors. More... | |
| spatialVector | operator& (const spatialVector &v) const |
| Transform v: ^BX_A . v. More... | |
| vector | transformPoint (const vector &p) const |
| Transform position p. More... | |
| spatialVector | operator&& (const spatialVector &v) const |
| Transform position p. More... | |
Friends | |
| Istream & | operator>> (Istream &, spatialTransform &) |
| Ostream & | operator<< (Ostream &, const spatialTransform &) |
Compact representation of the Plücker spatial transformation tensor in terms of the rotation tensor E and translation vector r .
See Chapter 2 and Appendix A in reference:
Featherstone, R. (2008).
Rigid body dynamics algorithms.
Springer.
Definition at line 68 of file spatialTransform.H.
|
inline |
Construct null.
Definition at line 38 of file spatialTransformI.H.
Referenced by spatialTransform::inv(), spatialTransform::operator&(), and Foam::Xt().

|
inline |
Construct from components.
Definition at line 45 of file spatialTransformI.H.
|
inline |
Construct from Istream.
Definition at line 56 of file spatialTransformI.H.
|
inline |
Return the rotation tensor.
Definition at line 77 of file spatialTransformI.H.
Referenced by Pxyz::jcalc(), Rs::jcalc(), Rxyz::jcalc(), Ryxz::jcalc(), Rzyx::jcalc(), Foam::operator>>(), rigidBodyMotion::status(), Foam::RBD::transform(), and rigidBodyState::write().

|
inline |
Return non-const access to the rotation tensor.
Definition at line 82 of file spatialTransformI.H.
|
inline |
Return the translation vector.
Definition at line 87 of file spatialTransformI.H.
Referenced by rigidBodyForces::CofR(), Pxyz::jcalc(), Rs::jcalc(), Rxyz::jcalc(), Ryxz::jcalc(), Rzyx::jcalc(), Foam::operator>>(), rigidBodyMotion::status(), Foam::RBD::transform(), rigidBodyState::write(), and Foam::Xt().

|
inline |
Return non-const access to the translation vector.
Definition at line 92 of file spatialTransformI.H.
|
inline |
Return the transpose transformation tensor ^A{X^*}_B.
X^T
Definition at line 98 of file spatialTransformI.H.
|
inline |
Return the inverse transformation tensor: X^-1.
X^-1 = (E^T, −E.r)
Definition at line 104 of file spatialTransformI.H.
References spatialTransform::spatialTransform(), and Tensor< Cmpt >::T().

|
inline |
Return the dual transformation tensor ^B{X^*}_A.
Definition at line 112 of file spatialTransformI.H.
|
inline |
Return transformation tensor ^BX_A.
X
Definition at line 118 of file spatialTransformI.H.
References Foam::Zero.
|
inline |
Inner-product multiply with a transformation tensor.
Definition at line 128 of file spatialTransformI.H.
|
inline |
Return the inner-product of two transformation tensors.
Definition at line 135 of file spatialTransformI.H.
References spatialTransform::spatialTransform().

|
inline |
Transform v: ^BX_A . v.
X.v = (E . vw, E . (vl - r^vw))
Definition at line 144 of file spatialTransformI.H.
|
inline |
Transform position p.
X:p = E . (pl - r)
Definition at line 170 of file spatialTransformI.H.
References p.
|
inline |
Transform position p.
X:p = (E . pw, E . (vl - r))
Definition at line 157 of file spatialTransformI.H.
|
friend |
|
friend |