38 rodas23::d1 = 1.0/2.0,
39 rodas23::d2 = 3.0/2.0,
47 rodas23::c43 = -8.0/3.0,
48 rodas23::gamma = 1.0/2.0;
88 resizeField(pivotIndices_);
109 odes_.jacobian(x0,
y0, li, dfdx_, dfdy_);
111 for (
label i=0; i<n_; i++)
113 for (
label j=0; j<n_; j++)
115 a_(i, j) = -dfdy_(i, j);
118 a_(i, i) += 1.0/(gamma*dx);
126 k1_[i] = dydx0[i] + dx*d1*dfdx_[i];
134 k2_[i] = dydx0[i] + dx*d2*dfdx_[i] + c21*k1_[i]/dx;
143 y[i] =
y0[i] + dy_[i];
146 odes_.derivatives(x0 + dx,
y, li, dydx_);
150 k3_[i] = dydx_[i] + (c31*k1_[i] + c32*k2_[i])/dx;
159 y[i] =
y0[i] + dy_[i];
162 odes_.derivatives(x0 + dx,
y, li, dydx_);
166 err_[i] = dydx_[i] + (c41*k1_[i] + c42*k2_[i] + c43*k3_[i])/dx;
173 y[i] =
y0[i] + dy_[i] + err_[i];
176 return normaliseError(
y0,
y, err_);
#define forAll(list, i)
Loop across all elements in list.
Macros for easy insertion into run-time selection tables.
Abstract base-class for ODE system solvers.
virtual bool resize()=0
Resize the ODE solver.
Abstract base class for the systems of ordinary differential equations.
virtual scalar solve(const scalar x0, const scalarField &y0, const label li, const scalarField &dydx0, const scalar dx, scalarField &y) const =0
Solve a single step dx and return the error.
bool resize(const label n)
Resize the ODE solver.
A list of keyword definitions, which are a keyword followed by any number of values (e....
An ODE solver for chemistry.
L-stable, stiffly-accurate embedded Rosenbrock ODE solver of order (2)3.
virtual bool resize()
Resize the ODE solver.
virtual void solve(scalar &x, scalarField &y, const label li, scalar &dxTry) const
Inherit solve from ODESolver.
rodas23(const ODESystem &ode, const dictionary &dict)
Construct from ODESystem.
intWM_LABEL_SIZE_t label
A label is an int32_t or int64_t as specified by the pre-processor macro WM_LABEL_SIZE.
addToRunTimeSelectionTable(polyPatch, mergedCyclicPolyPatch, word)
dimensionedScalar y0(const dimensionedScalar &ds)
void LUBacksubstitute(const scalarSquareMatrix &luMmatrix, const labelList &pivotIndices, List< Type > &source)
LU back-substitution with given source, returning the solution.
void LUDecompose(scalarSquareMatrix &matrix, labelList &pivotIndices)
LU decompose the matrix with pivoting.
defineTypeNameAndDebug(combustionModel, 0)