56 int main(
int argc,
char *argv[])
63 #include "createControl.H"
71 while (runTime.loop())
73 Info<<
"Time = " << runTime.userTimeName() <<
nl <<
endl;
75 force.primitiveFieldRef() =
ReImSum
79 K/(
mag(
K) + 1.0e-6) ^ forceGen.newField(),
K.nn()
125 U.correctBoundaryConditions();
130 if (runTime.writeTime())
135 Info<<
"ExecutionTime = " << runTime.elapsedCpuTime() <<
" s"
136 <<
" ClockTime = " << runTime.elapsedClockTime() <<
" s"
Generic GeometricField class.
static tmp< complexField > reverseTransform(const tmp< complexField > &field, const labelList &nn)
A special matrix type and solver, designed for finite volume solutions of scalar equations....
SolverPerformance< Type > solve(const dictionary &)
Solve segregated or coupled returning the solution statistics.
tmp< volScalarField > A() const
Return the central coefficient.
tmp< VolField< Type > > H() const
Return the H operation source.
tmp< SurfaceField< Type > > flux() const
Return the face-flux field from the matrix.
bool correct(const bool finalIter=false)
Piso loop within outer loop.
Calculates and prints the continuity errors.
int main(int argc, char *argv[])
Calculate the first temporal derivative.
Calculate the face-flux of the given field.
Calculate the gradient of the given field.
Calculate the matrix for the first temporal derivative.
Calculate the matrix for the divergence of the given field and flux.
Calculate the matrix for the laplacian of the field.
Declare and initialise the cumulative continuity error.
volScalarField rAU(1.0/UEqn.A())
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(rho) *fvc::flux(HbyA))
tmp< SurfaceField< typename innerProduct< vector, Type >::type > > flux(const VolField< Type > &vf)
Return the face-flux field obtained from the given volVectorField.
static tmp< SurfaceField< Type > > interpolate(const VolField< Type > &tvf, const surfaceScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
tmp< VolField< typename outerProduct< vector, Type >::type > > grad(const SurfaceField< Type > &ssf)
tmp< VolField< Type > > div(const SurfaceField< Type > &ssf)
tmp< SurfaceField< typename Foam::flux< Type >::type > > ddtCorr(const VolField< Type > &U, const SurfaceField< Type > &Uf)
tmp< fvMatrix< Type > > laplacian(const VolField< Type > &vf, const word &name)
tmp< fvMatrix< Type > > div(const surfaceScalarField &flux, const VolField< Type > &vf, const word &name)
tmp< fvMatrix< Type > > ddt(const VolField< Type > &vf)
void constrainPressure(volScalarField &p, const RhoType &rho, const volVectorField &U, const surfaceScalarField &phiHbyA, const RAUType &rhorAU, const MRFType &MRF)
Ostream & endl(Ostream &os)
Add newline and flush stream.
dimensioned< scalar > mag(const dimensioned< Type > &)
tmp< volVectorField > constrainHbyA(const tmp< volVectorField > &tHbyA, const volVectorField &U, const volScalarField &p)
void writeEk(const volVectorField &U, const Kmesh &K)
SolverPerformance< Type > solve(fvMatrix< Type > &, const word &)
Solve returning the solution statistics given convergence tolerance.
scalarField ReImSum(const UList< complex > &cf)
Execute application functionObjects to post-process existing results.
This function evaluates q(k) (McComb, p61) by summing all wavevectors in a k-shell....