thermophysicalPredictor.C
Go to the documentation of this file.
1 /*---------------------------------------------------------------------------*\
2  ========= |
3  \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4  \\ / O peration | Website: https://openfoam.org
5  \\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
6  \\/ M anipulation |
7 -------------------------------------------------------------------------------
8 License
9  This file is part of OpenFOAM.
10 
11  OpenFOAM is free software: you can redistribute it and/or modify it
12  under the terms of the GNU General Public License as published by
13  the Free Software Foundation, either version 3 of the License, or
14  (at your option) any later version.
15 
16  OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19  for more details.
20 
21  You should have received a copy of the GNU General Public License
22  along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23 
24 \*---------------------------------------------------------------------------*/
25 
26 #include "multicomponentFluid.H"
27 #include "fvcDdt.H"
28 
29 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
30 
32 {
34  (
36  (
37  mesh,
38  fields,
39  phi,
40  mesh.schemes().div("div(phi,Yi_h)")
41  )
42  );
43 
44  reaction->correct();
45 
46  forAll(Y, i)
47  {
48  if (composition.solve(i))
49  {
50  volScalarField& Yi = Y_[i];
51 
52  fvScalarMatrix YiEqn
53  (
54  fvm::ddt(rho, Yi)
55  + mvConvection->fvmDiv(phi, Yi)
56  + thermophysicalTransport->divj(Yi)
57  ==
58  reaction->R(Yi)
59  + fvModels().source(rho, Yi)
60  );
61 
62  YiEqn.relax();
63 
64  fvConstraints().constrain(YiEqn);
65 
66  YiEqn.solve("Yi");
67 
69  }
70  }
71 
73 
74 
76 
78  (
79  fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)
80  + fvc::ddt(rho, K) + fvc::div(phi, K)
81  + pressureWork
82  (
83  he.name() == "e"
84  ? mvConvection->fvcDiv(phi, p/rho)()
85  : -dpdt
86  )
88  ==
89  reaction->Qdot()
90  + (
91  buoyancy.valid()
92  ? fvModels().source(rho, he) + rho*(U & buoyancy->g)
93  : fvModels().source(rho, he)
94  )
95  );
96 
97  EEqn.relax();
98 
100 
101  EEqn.solve();
102 
104 
105  thermo_.correct();
106 }
107 
108 
109 // ************************************************************************* //
fvScalarMatrix EEqn(fvm::div(phi, he)+(he.name()=="e" ? fvc::div(phi, volScalarField("Ekp", 0.5 *magSqr(U)+p/rho)) :fvc::div(phi, volScalarField("K", 0.5 *magSqr(U))))+thermophysicalTransport->divq(he)==fvModels.source(rho, he))
#define forAll(list, i)
Loop across all elements in list.
Definition: UList.H:434
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.schemes().div("div(phi,ft_b_ha_hau)")))
Generic GeometricField class.
bool solve(label speciei) const
Return true if the specie should be solved for.
void normalise()
Normalise the mass fractions.
virtual volScalarField & he()=0
Enthalpy/Internal energy [J/kg].
virtual void correct()=0
Update properties.
bool constrain(fvMatrix< Type > &eqn) const
Apply constraints to an equation.
A special matrix type and solver, designed for finite volume solutions of scalar equations....
Definition: fvMatrix.H:118
void relax(const scalar alpha)
Relax matrix (for steady-state solution).
Definition: fvMatrix.C:604
SolverPerformance< Type > solve(const dictionary &)
Solve segregated or coupled returning the solution statistics.
Definition: fvMatrixSolve.C:58
const fvSchemes & schemes() const
Return the fvSchemes.
Definition: fvMesh.C:1748
Finite volume models.
Definition: fvModels.H:65
ITstream & div(const word &name) const
Definition: fvSchemes.C:479
Abstract base class for convection schemes.
Reaction base-class holding the specie names and coefficients.
Definition: reaction.H:57
Foam::fvConstraints & fvConstraints() const
Return the fvConstraints that are created on demand.
Definition: solver.C:96
const fvMesh & mesh
Region mesh.
Definition: solver.H:94
Buoyancy related data for the Foam::solvers::isothermalFluid solver module when solving buoyant cases...
Definition: buoyancy.H:70
uniformDimensionedVectorField g
Gravitational acceleration.
Definition: buoyancy.H:83
const surfaceScalarField & phi
Mass-flux field.
volScalarField K
Kinetic energy field.
const volVectorField & U
Velocity field.
tmp< volScalarField::Internal > pressureWork(const tmp< volScalarField::Internal > &) const
Adds the mesh-motion work to the pressure work term provided.
const volScalarField & rho
Reference to the continuity density field.
volScalarField::Internal dpdt
Rate of change of the pressure.
const volScalarField & p
Reference to the pressure field.
virtual void thermophysicalPredictor()
Construct and solve the energy equation,.
const PtrList< volScalarField > & Y
Reference to the composition.
fluidMulticomponentThermo & thermo_
PtrList< volScalarField > & Y_
autoPtr< fluidMulticomponentThermophysicalTransportModel > thermophysicalTransport
multivariateSurfaceInterpolationScheme< scalar >::fieldTable fields
A class for managing temporary objects.
Definition: tmp.H:55
Calculate the first temporal derivative.
tmp< VolField< Type > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:45
tmp< VolField< Type > > div(const SurfaceField< Type > &ssf)
Definition: fvcDiv.C:47
tmp< fvMatrix< Type > > ddt(const VolField< Type > &vf)
Definition: fvmDdt.C:46
thermo he()