interfaceProperties.C
Go to the documentation of this file.
1 /*---------------------------------------------------------------------------*\
2  ========= |
3  \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4  \\ / O peration | Website: https://openfoam.org
5  \\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
6  \\/ M anipulation |
7 -------------------------------------------------------------------------------
8 License
9  This file is part of OpenFOAM.
10 
11  OpenFOAM is free software: you can redistribute it and/or modify it
12  under the terms of the GNU General Public License as published by
13  the Free Software Foundation, either version 3 of the License, or
14  (at your option) any later version.
15 
16  OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19  for more details.
20 
21  You should have received a copy of the GNU General Public License
22  along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23 
24 \*---------------------------------------------------------------------------*/
25 
26 #include "interfaceProperties.H"
28 #include "unitConversion.H"
29 #include "surfaceInterpolate.H"
30 #include "fvcDiv.H"
31 #include "fvcGrad.H"
32 #include "fvcSnGrad.H"
33 
34 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
35 
36 // Correction for the boundary condition on the unit normal nHat on
37 // walls to produce the correct contact angle.
38 
39 // The dynamic contact angle is calculated from the component of the
40 // velocity on the direction of the interface, parallel to the wall.
41 
42 void Foam::interfaceProperties::correctContactAngle
43 (
44  surfaceVectorField::Boundary& nHatb,
45  const surfaceVectorField::Boundary& gradAlphaf
46 )
47 {
48  const fvMesh& mesh = alpha1_.mesh();
51 
52  const fvBoundaryMesh& boundary = mesh.boundary();
53 
55  {
56  if (isA<contactAngleFvPatchScalarField>(a1bf[patchi]))
57  {
58  contactAngleFvPatchScalarField& a1cap =
59  refCast<contactAngleFvPatchScalarField>
60  (
61  a1bf[patchi]
62  );
63 
64  fvsPatchVectorField& nHatp = nHatb[patchi];
65  const scalarField cosTheta
66  (
67  a1cap.cosTheta(U_.boundaryField()[patchi], nHatp)
68  );
69 
70  const vectorField nf
71  (
72  boundary[patchi].nf()
73  );
74 
75  // Reset nHatp to correspond to the contact angle
76 
77  const scalarField a12(nHatp & nf);
78  const scalarField b1(cosTheta);
79 
80  scalarField b2(nHatp.size());
81  forAll(b2, facei)
82  {
83  b2[facei] = cos(acos(a12[facei]) - acos(cosTheta[facei]));
84  }
85 
86  const scalarField det(1.0 - a12*a12);
87 
88  scalarField a((b1 - a12*b2)/det);
89  scalarField b((b2 - a12*b1)/det);
90 
91  nHatp = a*nf + b*nHatp;
92  nHatp /= (mag(nHatp) + deltaN_.value());
93 
94  a1cap.gradient() = (nf & nHatp)*mag(gradAlphaf[patchi]);
95  a1cap.evaluate();
96  a2bf[patchi] = 1 - a1cap;
97  }
98  }
99 }
100 
101 
102 void Foam::interfaceProperties::calculateK()
103 {
104  const fvMesh& mesh = alpha1_.mesh();
105  const surfaceVectorField& Sf = mesh.Sf();
106 
107  // Cell gradient of alpha
108  const volVectorField gradAlpha(fvc::grad(alpha1_, "nHat"));
109 
110  // Interpolated face-gradient of alpha
111  surfaceVectorField gradAlphaf(fvc::interpolate(gradAlpha));
112 
113  // gradAlphaf -=
114  // (mesh.Sf()/mesh.magSf())
115  // *(fvc::snGrad(alpha1_) - (mesh.Sf() & gradAlphaf)/mesh.magSf());
116 
117  // Face unit interface normal
118  surfaceVectorField nHatfv(gradAlphaf/(mag(gradAlphaf) + deltaN_));
119  // surfaceVectorField nHatfv
120  // (
121  // (gradAlphaf + deltaN_*vector(0, 0, 1)
122  // *sign(gradAlphaf.component(vector::Z)))/(mag(gradAlphaf) + deltaN_)
123  // );
124  correctContactAngle(nHatfv.boundaryFieldRef(), gradAlphaf.boundaryField());
125 
126  // Face unit interface normal flux
127  nHatf_ = nHatfv & Sf;
128 
129  // Simple expression for curvature
130  K_ = -fvc::div(nHatf_);
131 
132  // Complex expression for curvature.
133  // Correction is formally zero but numerically non-zero.
134  /*
135  volVectorField nHat(gradAlpha/(mag(gradAlpha) + deltaN_));
136  forAll(nHat.boundaryField(), patchi)
137  {
138  nHat.boundaryField()[patchi] = nHatfv.boundaryField()[patchi];
139  }
140 
141  K_ = -fvc::div(nHatf_) + (nHat & fvc::grad(nHatfv) & nHat);
142  */
143 }
144 
145 
146 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
147 
149 (
150  const IOdictionary& dict,
151  volScalarField& alpha1,
152  volScalarField& alpha2,
153  const volVectorField& U
154 )
155 :
156  phasePropertiesDict_(dict),
157 
158  alpha1_(alpha1),
159  alpha2_(alpha2),
160  U_(U),
161 
162  sigmaPtr_(surfaceTensionModel::New(dict, alpha1.mesh())),
163 
164  deltaN_
165  (
166  "deltaN",
167  1e-8/pow(average(alpha1.mesh().V()), 1.0/3.0)
168  ),
169 
170  nHatf_
171  (
172  IOobject
173  (
174  "nHatf",
175  alpha1_.time().name(),
176  alpha1_.mesh()
177  ),
178  alpha1_.mesh(),
180  ),
181 
182  K_
183  (
184  IOobject
185  (
186  "interfaceProperties:K",
187  alpha1_.time().name(),
188  alpha1_.mesh()
189  ),
190  alpha1_.mesh(),
192  )
193 {
194  calculateK();
195 }
196 
197 
198 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
199 
201 {
202  const volVectorField gradAlpha(fvc::grad(alpha1_));
203 
204  return volVectorField::New("n", gradAlpha/(mag(gradAlpha) + deltaN_));
205 }
206 
207 
210 {
211  return sigmaPtr_->sigma()*K_;
212 }
213 
214 
217 {
218  return fvc::interpolate(sigmaK())*fvc::snGrad(alpha1_);
219 }
220 
221 
224 {
225  return pos0(alpha1_ - 0.01)*pos0(0.99 - alpha1_);
226 }
227 
228 
230 {
231  calculateK();
232 }
233 
234 
236 {
237  sigmaPtr_->readDict(phasePropertiesDict_);
238 
239  return true;
240 }
241 
242 
243 // ************************************************************************* //
#define forAll(list, i)
Loop across all elements in list.
Definition: UList.H:434
const Mesh & mesh() const
Return mesh.
Generic GeometricField class.
GeometricBoundaryField< Type, PatchField, GeoMesh > Boundary
Type of the boundary field.
static tmp< GeometricField< Type, PatchField, GeoMesh > > New(const word &name, const Internal &, const PtrList< PatchField< Type >> &)
Return a temporary field constructed from name,.
const Boundary & boundaryField() const
Return const-reference to the boundary field.
Boundary & boundaryFieldRef()
Return a reference to the boundary field.
IOdictionary is derived from dictionary and IOobject to give the dictionary automatic IO functionalit...
Definition: IOdictionary.H:57
IOobject defines the attributes of an object for which implicit objectRegistry management is supporte...
Definition: IOobject.H:99
const Type & value() const
Return const reference to value.
tmp< surfaceScalarField > surfaceTensionForce() const
tmp< volScalarField > nearInterface() const
Indicator of the proximity of the interface.
void correct()
Correct the curvature.
interfaceProperties(const IOdictionary &dict, volScalarField &alpha1, volScalarField &alpha2, const volVectorField &U)
Construct from dictionary, volume fraction fields and mixture.
tmp< volVectorField > n() const
tmp< volScalarField > sigmaK() const
bool read()
Read phaseProperties dictionary.
Abstract base-class for surface tension models which return the surface tension coefficient field.
A class for managing temporary objects.
Definition: tmp.H:55
Calculate the divergence of the given field.
Calculate the gradient of the given field.
Calculate the snGrad of the given volField.
label patchi
volScalarField & b
Definition: createFields.H:27
U
Definition: pEqn.H:72
static tmp< SurfaceField< Type > > interpolate(const VolField< Type > &tvf, const surfaceScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
tmp< VolField< typename outerProduct< vector, Type >::type > > grad(const SurfaceField< Type > &ssf)
Definition: fvcGrad.C:46
tmp< VolField< Type > > div(const SurfaceField< Type > &ssf)
Definition: fvcDiv.C:47
tmp< SurfaceField< Type > > snGrad(const VolField< Type > &vf, const word &name)
Definition: fvcSnGrad.C:45
dimensionedScalar det(const dimensionedSphericalTensor &dt)
const doubleScalar e
Definition: doubleScalar.H:105
VolField< vector > volVectorField
Definition: volFieldsFwd.H:62
dimensionedScalar pos0(const dimensionedScalar &ds)
const dimensionSet dimless
const dimensionSet dimLength
dimensioned< Type > average(const DimensionedField< Type, GeoMesh > &df)
Field< scalar > scalarField
Specialisation of Field<T> for scalar.
dimensionedScalar pow(const dimensionedScalar &ds, const dimensionedScalar &expt)
void correctContactAngle(const volScalarField &alpha1, const volScalarField &alpha2, const volVectorField::Boundary &Ubf, const dimensionedScalar &deltaN, surfaceVectorField::Boundary &nHatbf)
Correct the contact angle for the two volume fraction fields.
dimensioned< scalar > mag(const dimensioned< Type > &)
tmp< DimensionedField< TypeR, GeoMesh > > New(const tmp< DimensionedField< TypeR, GeoMesh >> &tdf1, const word &name, const dimensionSet &dimensions)
Field< vector > vectorField
Specialisation of Field<T> for vector.
const dimensionSet dimArea
SurfaceField< vector > surfaceVectorField
word name(const complex &)
Return a string representation of a complex.
Definition: complex.C:47
fvsPatchField< vector > fvsPatchVectorField
dimensionedScalar cos(const dimensionedScalar &ds)
dimensionedScalar acos(const dimensionedScalar &ds)
faceListList boundary(nPatches)
dictionary dict
Unit conversion functions.