20 #define min(x,y) (((x) <= (y)) ? (x) : (y)) 21 #define max(x,y) (((x) >= (y)) ? (x) : (y)) 48 List<Vertex *> neighbor;
49 List<Triangle *> face;
54 void RemoveIfNonNeighbor(
Vertex *
n);
57 List<Triangle *> triangles;
61 assert(v0!=v1 && v1!=v2 && v2!=v0);
67 for(
int i=0;i<3;i++) {
68 vertex[i]->face.Add(
this);
69 for(
int j=0;j<3;j++)
if(i!=j) {
70 vertex[i]->neighbor.AddUnique(vertex[j]);
74 Triangle::~Triangle(){
76 triangles.Remove(
this);
78 if(vertex[i]) vertex[i]->face.Remove(
this);
82 if(!vertex[i] || !vertex[i2])
continue;
83 vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
84 vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
87 int Triangle::HasVertex(
Vertex *v) {
88 return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
90 void Triangle::ComputeNormal(){
91 Vector v0=vertex[0]->position;
92 Vector v1=vertex[1]->position;
93 Vector v2=vertex[2]->position;
94 normal = (v1-v0)*(v2-v1);
95 if(magnitude(normal)==0)
return;
98 void Triangle::ReplaceVertex(
Vertex *vold,
Vertex *vnew) {
100 assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
101 assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
105 else if(vold==vertex[1]){
109 assert(vold==vertex[2]);
113 vold->face.Remove(
this);
114 assert(!vnew->face.Contains(
this));
115 vnew->face.Add(
this);
117 vold->RemoveIfNonNeighbor(vertex[i]);
118 vertex[i]->RemoveIfNonNeighbor(vold);
121 assert(vertex[i]->face.Contains(
this)==1);
122 for(
int j=0;j<3;j++)
if(i!=j) {
123 vertex[i]->neighbor.AddUnique(vertex[j]);
137 while(neighbor.num) {
138 neighbor[0]->neighbor.Remove(
this);
139 neighbor.Remove(neighbor[0]);
143 void Vertex::RemoveIfNonNeighbor(
Vertex *
n) {
145 if(!neighbor.Contains(n))
return;
146 for(
int i=0;i<face.num;i++) {
147 if(face[i]->HasVertex(n))
return;
166 float edgelength = magnitude(v->position - u->position);
170 List<Triangle *> sides;
171 for(i=0;i<u->face.num;i++) {
172 if(u->face[i]->HasVertex(v)){
173 sides.Add(u->face[i]);
178 for(i=0;i<u->face.num;i++) {
180 for(
int j=0;j<sides.num;j++) {
183 float dotprod = u->face[i]->normal ^ sides[j]->normal;
184 mincurv =
min(mincurv,(1-dotprod)/2.0
f);
186 curvature =
max(curvature,mincurv);
189 return edgelength * curvature;
192 void ComputeEdgeCostAtVertex(
Vertex *v) {
199 if(v->neighbor.num==0) {
205 v->objdist = 1000000;
208 for(
int i=0;i<v->neighbor.num;i++) {
210 dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
211 if(dist<v->objdist) {
213 v->collapse=v->neighbor[i];
219 void ComputeAllEdgeCollapseCosts() {
224 ComputeEdgeCostAtVertex(
vertices[i]);
240 for(i=0;i<u->neighbor.num;i++) {
241 tmp.Add(u->neighbor[i]);
244 for(i=u->face.num-1;i>=0;i--) {
245 if(u->face[i]->HasVertex(v)) {
250 for(i=u->face.num-1;i>=0;i--) {
251 u->face[i]->ReplaceVertex(u,v);
255 for(i=0;i<tmp.num;i++) {
256 ComputeEdgeCostAtVertex(tmp[i]);
260 void AddVertex(List<Vector> &vert){
261 for(
int i=0;i<vert.num;i++) {
265 void AddFaces(List<tridata> &tri){
266 for(
int i=0;i<tri.num;i++) {
274 Vertex *MinimumCostEdge(){
283 if(
vertices[i]->objdist < mn->objdist) {
290 void ProgressiveMesh(List<Vector> &vert, List<tridata> &tri,
291 List<int> &map, List<int> &permutation)
295 ComputeAllEdgeCollapseCosts();
301 Vertex *mn = MinimumCostEdge();
305 map[
vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
307 Collapse(mn,mn->collapse);
310 for(
int i=0;i<map.num;i++) {
311 map[i] = (map[i]==-1)?0:permutation[map[i]];
graph_traits< Graph >::vertex_descriptor Vertex
dimensioned< Type > max(const dimensioned< Type > &, const dimensioned< Type > &)
pointField vertices(const blockVertexList &bvl)
quaternion normalise(const quaternion &q)
Return the normalised (unit) quaternion of the given quaternion.
dimensioned< Type > min(const dimensioned< Type > &, const dimensioned< Type > &)