EEqn.H
Go to the documentation of this file.
1 {
2  volScalarField& he = thermo.he();
3 
5  (
6  fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)
7  + fvc::ddt(rho, K) + fvc::div(phi, K)
8  + (
9  he.name() == "e"
10  ? fvc::div
11  (
13  p,
14  "div(phiv,p)"
15  )
16  : -dpdt
17  )
18  + thermophysicalTransport->divq(he)
19  ==
20  rho*(U&g)
21  + parcels.Sh(he)
22  + surfaceFilm.Sh()
23  + radiation->Sh(thermo, he)
24  + combustion->Qdot()
25  + fvOptions(rho, he)
26  );
27 
28  EEqn.relax();
29 
30  fvOptions.constrain(EEqn);
31 
32  EEqn.solve();
33 
34  fvOptions.correct(he);
35 
36  thermo.correct();
37  radiation->correct();
38 
39  Info<< "T gas min/max = " << min(T).value() << ", "
40  << max(T).value() << endl;
41 }
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:42
fv::options & fvOptions
dimensioned< Type > max(const dimensioned< Type > &, const dimensioned< Type > &)
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:47
Ostream & endl(Ostream &os)
Add newline and flush stream.
Definition: Ostream.H:251
rhoReactionThermo & thermo
Definition: createFields.H:28
CGAL::Exact_predicates_exact_constructions_kernel K
scalar Qdot
Definition: solveChemistry.H:2
phi
Definition: pEqn.H:104
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:45
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:57
volScalarField & dpdt
rhoReactionThermophysicalTransportModel & thermophysicalTransport
regionModels::surfaceFilmModel & surfaceFilm
dimensioned< Type > min(const dimensioned< Type > &, const dimensioned< Type > &)
const volScalarField & T
static tmp< GeometricField< Type, fvsPatchField, surfaceMesh > > interpolate(const GeometricField< Type, fvPatchField, volMesh > &tvf, const surfaceScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
Info<< "Creating combustion model\"<< endl;autoPtr< CombustionModel< psiReactionThermo > > combustion(CombustionModel< psiReactionThermo >::New(thermo, turbulence()))
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
Definition: fvcMeshPhi.C:188
U
Definition: pEqn.H:72
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.divScheme("div(phi,Yi_h)")))
autoPtr< radiationModel > radiation(radiationModel::New(T))
messageStream Info
volScalarField & p
const dimensionedVector & g
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e" ? fvc::div(fvc::absolute(phi/fvc::interpolate(rho), U), p, "div(phiv,p)") :-dpdt)+thermophysicalTransport->divq(he)==reaction->Qdot()+fvOptions(rho, he))