EEqn.H
Go to the documentation of this file.
1 {
2  volScalarField& he = thermo.he();
3 
5  (
6  fvm::ddt(rho, he) + fvm::div(phi, he)
7  + fvc::ddt(rho, K) + fvc::div(phi, K)
8  + (
9  he.name() == "e"
10  ? fvc::div
11  (
13  p,
14  "div(phiv,p)"
15  )
16  : -dpdt
17  )
18  - fvm::laplacian(turbulence.alphaEff(), he)
19  ==
20  rho*(U&g)
21  + rad.Sh(thermo, he)
22  + Qdot
23  + fvOptions(rho, he)
24  );
25 
26  EEqn.relax();
27 
28  fvOptions.constrain(EEqn);
29 
30  EEqn.solve();
31 
32  fvOptions.correct(he);
33 
34  thermo.correct();
35  rad.correct();
36 
37  Info<< "Min/max T:" << min(thermo.T()).value() << ' '
38  << max(thermo.T()).value() << endl;
39 }
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:42
fv::options & fvOptions
surfaceScalarField & phi
dimensioned< Type > max(const dimensioned< Type > &, const dimensioned< Type > &)
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:47
Ostream & endl(Ostream &os)
Add newline and flush stream.
Definition: Ostream.H:256
rhoReactionThermo & thermo
Definition: createFields.H:28
tmp< GeometricField< Type, fvPatchField, volMesh > > laplacian(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvcLaplacian.C:45
CGAL::Exact_predicates_exact_constructions_kernel K
scalar Qdot
Definition: solveChemistry.H:2
radiation::radiationModel & rad
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:45
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:52
volScalarField & dpdt
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e" ? fvc::div(fvc::absolute(phi/fvc::interpolate(rho), U), p, "div(phiv,p)") :-dpdt) - fvm::laplacian(turbulence->alphaEff(), he)==Qdot+fvOptions(rho, he))
Info<< "Reading field U\"<< endl;volVectorField U(IOobject("U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);volScalarField rho(IOobject("rho", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE), thermo.rho());volVectorField rhoU(IOobject("rhoU", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE), rho *U);volScalarField rhoE(IOobject("rhoE", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE), rho *(e+0.5 *magSqr(U)));surfaceScalarField pos(IOobject("pos", runTime.timeName(), mesh), mesh, dimensionedScalar("pos", dimless, 1.0));surfaceScalarField neg(IOobject("neg", runTime.timeName(), mesh), mesh, dimensionedScalar("neg", dimless, -1.0));surfaceScalarField phi("phi", fvc::flux(rhoU));Info<< "Creating turbulence model\"<< endl;autoPtr< compressible::turbulenceModel > turbulence(compressible::turbulenceModel::New(rho, U, phi, thermo))
Definition: createFields.H:94
dimensioned< Type > min(const dimensioned< Type > &, const dimensioned< Type > &)
static tmp< GeometricField< Type, fvsPatchField, surfaceMesh > > interpolate(const GeometricField< Type, fvPatchField, volMesh > &tvf, const surfaceScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
Definition: fvcMeshPhi.C:188
U
Definition: pEqn.H:72
messageStream Info
volScalarField alphaEff("alphaEff", turbulence->nu()/Pr+alphat)
volScalarField & p
const dimensionedVector & g