57 this->v_[XX] = st.
ii(); this->v_[XY] = 0; this->v_[XZ] = 0;
58 this->v_[YY] = st.
ii(); this->v_[YZ] = 0;
59 this->v_[ZZ] = st.
ii();
66 const Cmpt txx,
const Cmpt txy,
const Cmpt txz,
67 const Cmpt tyy,
const Cmpt tyz,
71 this->v_[XX] = txx; this->v_[XY] = txy; this->v_[XZ] = txz;
72 this->v_[YY] = tyy; this->v_[YZ] = tyz;
190 this->v_[XX] = st.
ii(); this->v_[XY] = 0; this->v_[XZ] = 0;
191 this->v_[YY] = st.
ii(); this->v_[YZ] = 0;
192 this->v_[ZZ] = st.
ii();
218 st1.
xx()*st2.
xx() + st1.
xy()*st2.
xy() + st1.
xz()*st2.
xz(),
219 st1.
xx()*st2.
xy() + st1.
xy()*st2.
yy() + st1.
xz()*st2.
yz(),
220 st1.
xx()*st2.
xz() + st1.
xy()*st2.
yz() + st1.
xz()*st2.
zz(),
222 st1.
xy()*st2.
xx() + st1.
yy()*st2.
xy() + st1.
yz()*st2.
xz(),
223 st1.
xy()*st2.
xy() + st1.
yy()*st2.
yy() + st1.
yz()*st2.
yz(),
224 st1.
xy()*st2.
xz() + st1.
yy()*st2.
yz() + st1.
yz()*st2.
zz(),
226 st1.
xz()*st2.
xx() + st1.
yz()*st2.
xy() + st1.
zz()*st2.
xz(),
227 st1.
xz()*st2.
xy() + st1.
yz()*st2.
yy() + st1.
zz()*st2.
yz(),
228 st1.
xz()*st2.
xz() + st1.
yz()*st2.
yz() + st1.
zz()*st2.
zz()
240 st1.
xx()*st2.
xx() + 2*st1.
xy()*st2.
xy() + 2*st1.
xz()*st2.
xz()
241 + st1.
yy()*st2.
yy() + 2*st1.
yz()*st2.
yz()
254 st.
xx()*v.
x() + st.
xy()*v.
y() + st.
xz()*v.
z(),
255 st.
xy()*v.
x() + st.
yy()*v.
y() + st.
yz()*v.
z(),
256 st.
xz()*v.
x() + st.
yz()*v.
y() + st.
zz()*v.
z()
268 v.
x()*st.
xx() + v.
y()*st.
xy() + v.
z()*st.
xz(),
269 v.
x()*st.
xy() + v.
y()*st.
yy() + v.
z()*st.
yz(),
270 v.
x()*st.
xz() + v.
y()*st.
yz() + v.
z()*st.
zz()
277 inline SymmTensor<Cmpt>
310 return st.
xx() + st.
yy() + st.
zz();
318 return (1.0/3.0)*
tr(st);
440 inline SymmTensor<Cmpt>
445 spt1.
ii() + st2.
xx(), st2.
xy(), st2.
xz(),
446 spt1.
ii() + st2.
yy(), st2.
yz(),
453 inline SymmTensor<Cmpt>
458 st1.
xx() + spt2.
ii(), st1.
xy(), st1.
xz(),
459 st1.
yy() + spt2.
ii(), st1.
yz(),
466 inline SymmTensor<Cmpt>
471 spt1.
ii() - st2.
xx(), -st2.
xy(), -st2.
xz(),
472 spt1.
ii() - st2.
yy(), -st2.
yz(),
479 inline SymmTensor<Cmpt>
484 st1.
xx() - spt2.
ii(), st1.
xy(), st1.
xz(),
485 st1.
yy() - spt2.
ii(), st1.
yz(),
493 inline SymmTensor<Cmpt>
498 spt1.
ii()*st2.
xx(), spt1.
ii()*st2.
xy(), spt1.
ii()*st2.
xz(),
499 spt1.
ii()*st2.
yy(), spt1.
ii()*st2.
yz(),
507 inline SymmTensor<Cmpt>
512 st1.
xx()*spt2.
ii(), st1.
xy()*spt2.
ii(), st1.
xz()*spt2.
ii(),
513 st1.
yy()*spt2.
ii(), st1.
yz()*spt2.
ii(),
524 return(spt1.
ii()*st2.
xx() + spt1.
ii()*st2.
yy() + spt1.
ii()*st2.
zz());
533 return(st1.
xx()*spt2.
ii() + st1.
yy()*spt2.
ii() + st1.
zz()*spt2.
ii());
542 v.
x()*v.
x(), v.
x()*v.
y(), v.
x()*v.
z(),
543 v.
y()*v.
y(), v.
y()*v.
z(),
An Istream is an abstract base class for all input systems (streams, files, token lists etc)....
Templated 3D SphericalTensor derived from VectorSpace adding construction from 1 component,...
Templated 3D symmetric tensor derived from VectorSpace adding construction from 6 components,...
SymmTensor()
Construct null.
void operator=(const SphericalTensor< Cmpt > &)
Assign to given SphericalTensor.
const SymmTensor< Cmpt > & T() const
Transpose.
Templated 3D tensor derived from MatrixSpace adding construction from 9 components,...
Templated 3D Vector derived from VectorSpace adding construction from 3 components,...
A class representing the concept of 0 used to avoid unnecessary manipulations for objects that are kn...
Cmpt invariantI(const SymmTensor< Cmpt > &st)
Return the 1st invariant of a symmetric tensor.
void dev2(LagrangianPatchField< tensor > &f, const LagrangianPatchField< tensor > &f1)
void dev(LagrangianPatchField< tensor > &f, const LagrangianPatchField< tensor > &f1)
void twoSymm(LagrangianPatchField< tensor > &f, const LagrangianPatchField< tensor > &f1)
SphericalTensor< Cmpt > sph(const DiagTensor< Cmpt > &dt)
Return the spherical part of a diagonal tensor.
void det(LagrangianPatchField< scalar > &f, const LagrangianPatchField< tensor > &f1)
Cmpt invariantIII(const SymmTensor< Cmpt > &st)
Return the 3rd invariant of a symmetric tensor.
dimensionedSymmTensor cof(const dimensionedSymmTensor &dt)
void symm(LagrangianPatchField< tensor > &f, const LagrangianPatchField< tensor > &f1)
Cmpt invariantII(const SymmTensor< Cmpt > &st)
Return the 2nd invariant of a symmetric tensor.
void sqr(LagrangianPatchField< typename outerProduct< Type, Type >::type > &f, const LagrangianPatchField< Type > &f1)
tmp< VolField< Type > > operator&(const fvMatrix< Type > &, const DimensionedField< Type, volMesh > &)
void tr(LagrangianPatchField< scalar > &f, const LagrangianPatchField< tensor > &f1)
tmp< fvMatrix< Type > > operator*(const volScalarField::Internal &, const fvMatrix< Type > &)
tmp< fvMatrix< Type > > operator+(const fvMatrix< Type > &, const fvMatrix< Type > &)
void inv(LagrangianPatchField< tensor > &f, const LagrangianPatchField< tensor > &f1)
void magSqr(LagrangianPatchField< scalar > &f, const LagrangianPatchField< Type > &f1)
dimensionedSymmTensor innerSqr(const dimensionedSymmTensor &dt)
tmp< fvMatrix< Type > > operator-(const fvMatrix< Type > &)
dimensioned< typename scalarProduct< Type1, Type2 >::type > operator&&(const dimensioned< Type1 > &, const dimensioned< Type2 > &)