fvScalarMatrix EaEqn(betav *fvm::ddt(rho, hea)+mvConvection->fvmDiv(phi, hea)+betav *fvc::ddt(rho, K)+fvc::div(phi, K)+(hea.name()=="ea" ? fvc::div(fvc::absolute(phi, rho, U), p/rho) :-betav *dpdt) - fvm::laplacian(Db, hea)+betav *fvModels.source(rho, hea))
volScalarField Db("Db", rho *turbulence->nuEff())
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.schemes().div("div(phi,ft_b_ha_hau)")))
bool constrain(fvMatrix< Type > &eqn) const
Apply constraints to an equation.
tmp< fvMatrix< Type > > source(const VolField< Type > &field) const
Return source for an equation.
Foam::fvConstraints & fvConstraints(Foam::fvConstraints::New(mesh))
Foam::fvModels & fvModels(Foam::fvModels::New(mesh))
tmp< VolField< Type > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
tmp< VolField< Type > > laplacian(const VolField< Type > &vf, const word &name)
tmp< VolField< Type > > div(const SurfaceField< Type > &ssf)
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
fvMatrix< scalar > fvScalarMatrix
VolField< scalar > volScalarField
fluidMulticomponentThermo & thermo