62 vector d = centres[nei[facei]] - centres[own[facei]];
69 result[own[facei]] =
max(cosDDotS, result[own[facei]]);
71 result[nei[facei]] =
max(cosDDotS, result[nei[facei]]);
87 vector d = faceCentres[facei] - centres[faceCells[facei]];
94 result[faceCells[facei]] =
max(cosDDotS, result[faceCells[facei]]);
126 (faceCtrs[facei] - cellCtrs[own[facei]]) & areas[facei]
131 (cellCtrs[nei[facei]] - faceCtrs[facei]) & areas[facei]
134 point faceIntersection =
136 + (dOwn/(dOwn+dNei))*(cellCtrs[nei[facei]] - cellCtrs[own[facei]]);
139 mag(faceCtrs[facei] - faceIntersection)
140 /(
mag(cellCtrs[nei[facei]] - cellCtrs[own[facei]]) + vSmall);
142 result[own[facei]] =
max(skewness, result[own[facei]]);
144 result[nei[facei]] =
max(skewness, result[nei[facei]]);
158 forAll(faceCentres, facei)
160 vector n = faceAreas[facei]/
mag(faceAreas[facei]);
162 point faceIntersection =
163 cellCtrs[faceCells[facei]]
164 + ((faceCentres[facei] - cellCtrs[faceCells[facei]])&n)*
n;
167 mag(faceCentres[facei] - faceIntersection)
169 mag(faceCentres[facei] - cellCtrs[faceCells[facei]])
173 result[faceCells[facei]] =
max(skewness, result[faceCells[facei]]);
201 vector d = centres[nei[facei]] - centres[own[facei]];
203 scalar magS =
mag(s);
208 result[facei] = cosDDotS;
224 forAll(faceCentres, facei)
226 vector d = faceCentres[facei] - centres[faceCells[facei]];
228 scalar magS =
mag(s);
233 result[globalFacei++] = cosDDotS;
264 (faceCtrs[facei] - cellCtrs[own[facei]]) & areas[facei]
269 (cellCtrs[nei[facei]] - faceCtrs[facei]) & areas[facei]
272 point faceIntersection =
274 + (dOwn/(dOwn+dNei))*(cellCtrs[nei[facei]] - cellCtrs[own[facei]]);
277 mag(faceCtrs[facei] - faceIntersection)
278 /(
mag(cellCtrs[nei[facei]] - cellCtrs[own[facei]]) + vSmall);
295 forAll(faceCentres, facei)
297 vector n = faceAreas[facei]/
mag(faceAreas[facei]);
299 point faceIntersection =
300 cellCtrs[faceCells[facei]]
301 + ((faceCentres[facei] - cellCtrs[faceCells[facei]])&n)*
n;
303 result[globalFacei++] =
304 mag(faceCentres[facei] - faceIntersection)
306 mag(faceCentres[facei] - cellCtrs[faceCells[facei]])
const polyBoundaryMesh & boundaryMesh() const
Return boundary mesh.
dimensionedScalar acos(const dimensionedScalar &ds)
#define forAll(list, i)
Loop across all elements in list.
layerAndWeight max(const layerAndWeight &a, const layerAndWeight &b)
tmp< scalarField > nonOrthogonality() const
Return cell non-orthogonality.
scalar radToDeg(const scalar rad)
Conversion from radians to degrees.
label nInternalFaces() const
virtual const labelList & faceNeighbour() const
Return face neighbour.
T & ref() const
Return non-const reference or generate a fatal error.
Unit conversion functions.
tmp< scalarField > faceSkewness() const
Return face skewness.
Pre-declare related SubField type.
gmvFile<< "tracers "<< particles.size()<< nl;forAllConstIter(Cloud< passiveParticle >, particles, iter){ gmvFile<< iter().position().x()<< " ";}gmvFile<< nl;forAllConstIter(Cloud< passiveParticle >, particles, iter){ gmvFile<< iter().position().y()<< " ";}gmvFile<< nl;forAllConstIter(Cloud< passiveParticle >, particles, iter){ gmvFile<< iter().position().z()<< " ";}gmvFile<< nl;forAll(lagrangianScalarNames, i){ word name=lagrangianScalarNames[i];IOField< scalar > s(IOobject(name, runTime.timeName(), cloud::prefix, mesh, IOobject::MUST_READ, IOobject::NO_WRITE))
tmp< scalarField > faceNonOrthogonality() const
Return face non-orthogonality.
cellQuality(const polyMesh &mesh)
Construct from mesh.
virtual const labelList & faceOwner() const
Return face owner.
layerAndWeight min(const layerAndWeight &a, const layerAndWeight &b)
const vectorField & cellCentres() const
A 1D vector of objects of type <T>, where the size of the vector is known and can be used for subscri...
const vectorField & faceCentres() const
const vectorField & faceAreas() const
dimensioned< scalar > mag(const dimensioned< Type > &)
Mesh consisting of general polyhedral cells.
A class for managing temporary objects.
tmp< scalarField > skewness() const
Return cell skewness.