EEqn.H
Go to the documentation of this file.
1 {
2  volScalarField& he = thermo.he();
3 
5  (
6  fvm::div(phi, he)
7  + (
8  he.name() == "e"
9  ? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
10  : fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
11  )
12  + thermophysicalTransport->divq(he)
13  ==
14  fvOptions(rho, he)
15  );
16 
17  EEqn.relax();
18 
19  fvOptions.constrain(EEqn);
20 
21  EEqn.solve();
22 
23  fvOptions.correct(he);
24 
25  thermo.correct();
26 }
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:42
fv::options & fvOptions
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:47
rhoReactionThermo & thermo
Definition: createFields.H:28
phi
Definition: pEqn.H:104
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:57
rhoReactionThermophysicalTransportModel & thermophysicalTransport
dimensioned< scalar > magSqr(const dimensioned< Type > &)
U
Definition: pEqn.H:72
volScalarField & p
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e" ? fvc::div(fvc::absolute(phi/fvc::interpolate(rho), U), p, "div(phiv,p)") :-dpdt)+thermophysicalTransport->divq(he)==reaction->Qdot()+fvOptions(rho, he))