40 #ifndef scalarMatrices_H 41 #define scalarMatrices_H 71 const scalarSquareMatrix& matrix,
78 scalarSquareMatrix& matrix,
86 scalarSquareMatrix& matrix,
92 void LUDecompose(scalarSymmetricSquareMatrix& matrix);
99 const scalarSquareMatrix& luMmatrix,
110 const scalarSymmetricSquareMatrix& luMmatrix,
124 template<
class Form,
class Type>
134 scalarRectangularMatrix& answer,
135 const scalarRectangularMatrix& A,
136 const scalarRectangularMatrix& B,
137 const scalarRectangularMatrix&
C 142 scalarRectangularMatrix& answer,
143 const scalarRectangularMatrix& A,
145 const scalarRectangularMatrix&
C 149 scalarRectangularMatrix
SVDinv 151 const scalarRectangularMatrix& A,
152 scalar minCondition = 0
A templated 2D matrix of objects of <T>, where the n x m matrix dimensions are known and used for sub...
void LUBacksubstitute(const scalarSquareMatrix &luMmatrix, const labelList &pivotIndices, List< Type > &source)
LU back-substitution with given source, returning the solution.
DiagonalMatrix< scalar > scalarDiagonalMatrix
RectangularMatrix< scalar > scalarRectangularMatrix
scalarRectangularMatrix SVDinv(const scalarRectangularMatrix &A, scalar minCondition=0)
Return the inverse of matrix A using SVD.
A templated 2D square symmetric matrix of objects of <T>, where the n x n matrix dimension is known a...
intWM_LABEL_SIZE_t label
A label is an int32_t or int64_t as specified by the pre-processor macro WM_LABEL_SIZE.
SymmetricSquareMatrix< scalar > scalarSymmetricSquareMatrix
dimensionedScalar sign(const dimensionedScalar &ds)
Graphite solid properties.
const volScalarField & psi
void multiply(FieldField< Field, Type > &f, const FieldField< Field, Type > &f1, const FieldField< Field, scalar > &f2)
solverPerformance solve(fvMatrix< Type > &, const dictionary &)
Solve returning the solution statistics given convergence tolerance.
SquareMatrix< scalar > scalarSquareMatrix
void LUDecompose(scalarSquareMatrix &matrix, labelList &pivotIndices)
LU decompose the matrix with pivoting.
void LUsolve(scalarSquareMatrix &matrix, List< Type > &source)
Solve the matrix using LU decomposition with pivoting.