Public Member Functions | List of all members
Newmark Class Reference

Newmark 2nd-order time-integrator for 6DoF solid-body motion. More...

Inheritance diagram for Newmark:
Inheritance graph
[legend]
Collaboration diagram for Newmark:
Collaboration graph
[legend]

Public Member Functions

 TypeName ("Newmark")
 Runtime type information. More...
 
 Newmark (const dictionary &dict, sixDoFRigidBodyMotion &body)
 Construct from a dictionary and the body. More...
 
virtual ~Newmark ()
 Destructor. More...
 
virtual void solve (bool firstIter, const vector &fGlobal, const vector &tauGlobal, scalar deltaT, scalar deltaT0)
 Drag coefficient. More...
 
- Public Member Functions inherited from sixDoFSolver
 TypeName ("sixDoFSolver")
 Runtime type information. More...
 
 declareRunTimeSelectionTable (autoPtr, sixDoFSolver, dictionary,( const dictionary &dict, sixDoFRigidBodyMotion &body ),(dict, body))
 
 sixDoFSolver (sixDoFRigidBodyMotion &body)
 
virtual ~sixDoFSolver ()
 Destructor. More...
 

Additional Inherited Members

- Static Public Member Functions inherited from sixDoFSolver
static autoPtr< sixDoFSolverNew (const dictionary &dict, sixDoFRigidBodyMotion &body)
 
- Protected Member Functions inherited from sixDoFSolver
pointcentreOfRotation ()
 Return the current centre of rotation. More...
 
tensorQ ()
 Return the orientation. More...
 
vectorv ()
 Return non-const access to vector. More...
 
vectora ()
 Return non-const access to acceleration. More...
 
vectorpi ()
 Return non-const access to angular momentum. More...
 
vectortau ()
 Return non-const access to torque. More...
 
const pointcentreOfRotation0 () const
 Return the centre of rotation at previous time-step. More...
 
const tensorQ0 () const
 Return the orientation at previous time-step. More...
 
const vectorv0 () const
 Return the velocity at previous time-step. More...
 
const vectora0 () const
 Return the acceleration at previous time-step. More...
 
const vectorpi0 () const
 Return the angular momentum at previous time-step. More...
 
const vectortau0 () const
 Return the torque at previous time-step. More...
 
scalar aDamp () const
 Acceleration damping coefficient (for steady-state simulations) More...
 
tensor tConstraints () const
 Translational constraint tensor. More...
 
tensor rConstraints () const
 Rotational constraint tensor. More...
 
Tuple2< tensor, vectorrotate (const tensor &Q0, const vector &pi, const scalar deltaT) const
 Apply rotation tensors to Q0 for the given torque (pi) and deltaT. More...
 
void updateAcceleration (const vector &fGlobal, const vector &tauGlobal)
 Update and relax accelerations from the force and torque. More...
 
- Protected Attributes inherited from sixDoFSolver
sixDoFRigidBodyMotionbody_
 The rigid body. More...
 

Detailed Description

Newmark 2nd-order time-integrator for 6DoF solid-body motion.

Reference:

    Newmark, N. M. (1959).
    A method of computation for structural dynamics.
    Journal of the Engineering Mechanics Division, 85(3), 67-94.

Example specification in dynamicMeshDict:

solver
{
    type    Newmark;
    gamma   0.5;    // Velocity integration coefficient
    beta    0.25;   // Position integration coefficient
}
Source files

Definition at line 67 of file Newmark.H.

Constructor & Destructor Documentation

Newmark ( const dictionary dict,
sixDoFRigidBodyMotion body 
)

Construct from a dictionary and the body.

Definition at line 44 of file Newmark.C.

~Newmark ( )
virtual

Destructor.

Definition at line 64 of file Newmark.C.

References Newmark::solve().

Here is the call graph for this function:

Member Function Documentation

TypeName ( "Newmark"  )

Runtime type information.

void solve ( bool  firstIter,
const vector fGlobal,
const vector tauGlobal,
scalar  deltaT,
scalar  deltaT0 
)
virtual

Drag coefficient.

Implements sixDoFSolver.

Definition at line 71 of file Newmark.C.

References Foam::constant::atomic::a0, Tuple2< Type1, Type2 >::first(), Foam::constant::mathematical::pi(), and Foam::sqr().

Referenced by Newmark::~Newmark().

Here is the call graph for this function:

Here is the caller graph for this function:


The documentation for this class was generated from the following files: