EaEqn.H
Go to the documentation of this file.
1 {
2  volScalarField& hea = thermo.he();
3 
5  (
6  betav*fvm::ddt(rho, hea) + mvConvection->fvmDiv(phi, hea)
7  + betav*fvc::ddt(rho, K) + fvc::div(phi, K)
8  + (
9  hea.name() == "ea"
10  ? fvc::div(fvc::absolute(phi, rho, U), p/rho)
11  : -betav*dpdt
12  )
13  - fvm::laplacian(Db, hea)
14  + betav*fvModels.source(rho, hea)
15  );
16 
17  EaEqn.relax();
18 
20 
21  EaEqn.solve();
22 
24 
25  thermo.correct();
26 }
fvScalarMatrix EaEqn(betav *fvm::ddt(rho, hea)+mvConvection->fvmDiv(phi, hea)+betav *fvc::ddt(rho, K)+fvc::div(phi, K)+(hea.name()=="ea" ? fvc::div(fvc::absolute(phi, rho, U), p/rho) :-betav *dpdt) - fvm::laplacian(Db, hea)+betav *fvModels.source(rho, hea))
volScalarField Db("Db", rho *turbulence->nuEff())
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.schemes().div("div(phi,ft_b_ha_hau)")))
bool constrain(fvMatrix< Type > &eqn) const
Apply constraints to an equation.
Foam::fvConstraints & fvConstraints(Foam::fvConstraints::New(mesh))
Foam::fvModels & fvModels(Foam::fvModels::New(mesh))
K
Definition: pEqn.H:75
U
Definition: pEqn.H:72
tmp< VolField< Type > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:45
tmp< VolField< Type > > laplacian(const VolField< Type > &vf, const word &name)
Definition: fvcLaplacian.C:45
tmp< VolField< Type > > div(const SurfaceField< Type > &ssf)
Definition: fvcDiv.C:47
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
Definition: fvcMeshPhi.C:202
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:42
VolField< scalar > volScalarField
Definition: volFieldsFwd.H:61
volScalarField & p
fluidMulticomponentThermo & thermo
Definition: createFields.H:31