EEqn.H
Go to the documentation of this file.
1 {
2  volScalarField& he = thermo.he();
3 
5  (
6  fvm::ddt(rho, he) + fvm::div(phi, he)
7  + fvc::ddt(rho, K) + fvc::div(phi, K)
8  + (
9  he.name() == "e"
11  : -dpdt
12  )
13  + thermophysicalTransport->divq(he)
14  ==
15  fvModels.source(rho, he)
16  );
17 
18  EEqn.relax();
19 
21 
22  EEqn.solve();
23 
25 
26  thermo.correct();
27 }
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:42
fluidReactionThermo & thermo
Definition: createFields.H:28
U
Definition: pEqn.H:72
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:47
CGAL::Exact_predicates_exact_constructions_kernel K
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:45
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e" ? mvConvection->fvcDiv(fvc::absolute(phi, rho, U), p/rho) :-dpdt)+thermophysicalTransport->divq(he)==reaction->Qdot()+fvModels.source(rho, he))
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:58
volScalarField & dpdt
Foam::fvConstraints & fvConstraints
phi
Definition: correctPhi.H:3
fluidReactionThermophysicalTransportModel & thermophysicalTransport
bool constrain(fvMatrix< Type > &eqn) const
Apply constraints to an equation.
Foam::fvModels & fvModels
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
Definition: fvcMeshPhi.C:202
volScalarField & p